BNDES - Banco Nacional do Desenvolvimento Econômico e Social - Conhecimentos Específicos para o cargo de Ciência de Dados
Sobre o curso
Última atualização em 12/2024
Satisfação garantida ou seu dinheiro de volta!
Você poderá efetuar o cancelamento e obter 100% do dinheiro de volta em até 7 dias.
Aqui, no Gran Cursos Online, é satisfação garantida ou seu dinheiro de volta.
Mais Detalhes:
1. Curso baseado no Edital nº 01/2024;
2. Serão abordados os tópicos mais relevantes de cada disciplina (não necessariamente todos), a critério de cada um dos professores;
3. As videoaulas eventualmente ainda não disponibilizadas serão acrescidas de modo gradativo e em conformidade com o cronograma de gravação dos respectivos professores. Periodicamente, divulgamos o cronograma referente aos novos vídeos a serem disponibilizados;
4. Não serão ministrados os seguintes tópicos do Edital: 1. Conceitos fundamentais de dados: o que são dados; processos geradores de dados; tipos e classes de dados; formatos de arquivos de dados comuns (txt, csv, xlsx, xml, json e parquet).2. Representação de texto: Ngrams; CBoW; FTD-IDF; word embeddings (Word2Vec, GloVe e demais) e document embeddings (Doc2Vec, BERT, ELMo e demais).3. Modelagem de tópicos: latent dirichlet allocation (LDA); non-negative matrix factorization (NMF). Microsoft Team Data Science Process (TDS). 5. Reportes executivos: princípios de comunicação corporativa; interpretação e apresentação de dados de resultados de análises e de insights. LDA; ICA; T-SNE; Matématica: 2. Álgebra Linear: vetores e matrizes; operações com vetores e matrizes; tipos de matrizes; transformações lineares; espaços e subespaços vetoriais de Rn; sistemas de equações lineares; normas (L1, L2, infinita, p-generalizada, Minkowksi e Chebyshev), autovalores e autovetores; decomposição matricial (Cholesky e Singular Value Decomposition (SVD)). 3. Otimização Matemática: programação linear inteira e mista; problemas de otimização unidimensionais e multidimensionais, com e sem restrições; otimização convexa; programação dinâmica. Probabilidade e Estatística: 8. Inferência Bayesiana: distribuições a priori e a posteriori; estimativa pontual e intervalar; predição e testes de hipóteses bayesianos; critérios de seleção de modelos; métodos MCMC. Finanças Quantitativas: 2. Mercados de Taxas de Juros: Instrumentos de Renda Fixa; Taxa Spot; Taxa Foward; Relações Básicas de Não Arbitragem no Mercado de Juros; Curvas de Juros; Bootstraping de Curvas de Juros; Duration; Convexidade; técnicas de interpolação de taxas de juros; modelos de Svenson e de Nelson-Siegel. 3. Medidas de Desempenho e de Riscos: Volatilidade; Value At Risk; Conditional Value at Risk; Backtesting de Modelos de Risco; Maximum Drawdown; Sharpe Ratio; Information Ratio. 4. Otimização de carteiras: modelo de média-variância com e sem restrições; modelos de paridade de riscos; modelos de paridade de riscos hierárquica (HRP). 5. Simulação de Monte Carlo em Finanças: principais aplicações em precificação e análise de riscos. 6. Derivativos: conceitos gerais; derivativos de renda variável; derivativos de renda fixa; modelo de Black-Scholes.
5. Informamos que, visando à melhor compreensão e absorção dos conteúdos previstos no seu Edital, as videoaulas referentes a determinadas disciplinas foram organizadas com base na lógica didática proposta pelo(a) docente responsável e não de acordo com a ordem dos tópicos apresentada no conteúdo programático do certame.
O rol de professores poderá sofrer acréscimos ou substituições por motivos de força maior, ficando a cargo do Gran Cursos Online as devidas modificações.
AULAS EM PDF AUTOSSUFICIENTES:
1. Conteúdo produzido por mestres especializados na leitura como recurso didático completo.
2. Material prático que facilita a aprendizagem de maneira acelerada.
3. Exercícios comentados.
4. Em PDF Sintético, somente serão ministradas as aulas disponíveis no curso.
6. Não serão ministrados em PDF: I – MATEMÁTICA: 2. Álgebra Linear: vetores e matrizes; operações com vetores e matrizes; tipos de matrizes; transformações lineares; espaços e subespaços vetoriais de Rn ; sistemas de equações lineares; normas (L1, L2, infinita, p-generalizada, Minkowksi e Chebyshev), autovalores e autovetores; decomposição matricial (Cholesky e Singular Value Decomposition (SVD)). 3. Otimização Matemática: programação linear inteira e mista; problemas de otimização unidimensionais e multidimensionais, com e sem restrições; otimização convexa; programação dinâmica. II - PROBABILIDADE E ESTATÍSTICA: correlação de Spearman; correlação parcial. III - FINANÇAS QUANTITATIVAS: 2. Mercados de Taxas de Juros: Instrumentos de Renda Fixa; Taxa Spot; Taxa Foward; Relações Básicas de Não Arbitragem no Mercado de Juros; Curvas de Juros; Bootstraping de Curvas de Juros; Duration; Convexidade; técnicas de interpolação de taxas de juros; modelos de Svenson e de Nelson-Siegel. 3. Medidas de Desempenho e de Riscos: Volatilidade; Value At Risk; Conditional Value at Risk; Backtesting de Modelos de Risco; Maximum Drawdown; Sharpe Ratio; Information Ratio. 4. Otimização de carteiras: modelo de média-variância com e sem restrições; modelos de paridade de riscos; modelos de paridade de riscos hierárquica (HRP). 5. Simulação de Monte Carlo em Finanças: principais aplicações em precificação e análise de riscos. 6. Derivativos: conceitos gerais; derivativos de renda variável; derivativos de renda fixa; modelo de Black-Scholes. IV- DADOS E BASES DE DADOS: 1. Conceitos fundamentais de dados: o que são dados; processos geradores de dados; tipos e classes de dados; formatos de arquivos de dados comuns (txt, csv, xlsx, xml, json e parquet). 2. Introdução a Bases de Dados: o que são bases de dados; tipos de bases de dados; metadados; tidy data. 4. e suas diferenças; transações e índices. 5.Modelo de dados: modelo de entidade-relacionamento (ER); modelo relacional: tabelas, esquemas, chaves, consultas; modelo chave-valor; modelo colunar; modelo orientado a documentos; modelo orientado a grafos. V - GESTÃO DE PROJETOS DE CIÊNCIA DE DADOS: 1. Microsoft Team Data Science Process (TDSP); fundamentos de design thinking. 3. Principais papéis envolvidos em projetos de ciência de dados. VI - QUALIDADE E PREPARAÇÃO DE DADOS: 1. Metadados: a sua importância para avaliação da qualidade de dados; linhagem de dados; 2. Coleta de dados: fontes comuns de dados (internas e externas); interface de programação de aplicação (API); técnicas de web scraping. 3. Problemas comuns de qualidade de dados: valores ausentes; duplicatas; outliers; desbalanceamento; erros de imputação. 4. Preparação de dados: técnicas de tratamento e limpeza de dados; técnicas detecção de vieses; data profiling. 5. Pré-processamento de dados: técnicas de normalização e padronização; discretização; metodologias de codificação de variáveis categóricas (encoding). 6. Feature engineering: processos para enriquecimento de dados, com criação e seleção de features relevantes; transformações matemáticas e estatísticas comuns em variáveis. 7. Divisão de dados: técnicas de amostragem; divisão entre treinamento, validação e teste; abordagens para crossvalidation. VII – MODELAGEM: 1. Pipeline de treinamento de modelos e suas etapas. 2. Otimização de hiperparâmetros: grid search; random search; algoritmos de otimização avançados; automl; autotuning; autofeature engineering. 3. Métricas para avaliação e seleção de modelos: métricas para regressão (MSE; RMSE; MAE; R²; R² ajustado); 4. Técnicas de regularização: lasso; ridge; elastic net; dropout; early stopping; batch normalization. 5. Dados desbalanceados: técnicas para lidar com dados desbalanceados; oversampling; undersampling; dados sintéticos; ajuste de pesos. 6. Validação de Modelos: Kfold cross-validation; leave-one-out cross-validation; bootstrap. 7. Modelagem de IA centrada em dados (data-centric). 8. Interpretabilidade de modelos: feature importance; valores de Shapley (SHAP) e LIME. 9. Implantação de modelos em produção: exportação de modelos (pickle, PMML e ONNX); modelos como serviço (APIs; microsserviços); integração com sistemas existentes; APIs e serviços web; conceitos de MLOps; implantação local (on premise) e na nuvem. 10. Monitoramento de modelos: monitoramento de desempenho; data drift; concept drift; detecção de drifts; retreino e atualização de modelos. VIII - CLASSES DE MODELOS: LDA; ICA; T-SNE; uso de autoencoders. 4. Introdução à regressão: regressão linear simples e múltipla; hipóteses clássicas, método dos mínimos quadrados, diagnóstico e avaliação de modelos de regressão (F-test, coeficiente de determinação, análise de resíduos e demais), testes de significância, intervalos de confiança, análise ANOVA, modelos não lineares (log-log, lin-log, log-lin e inverso). 7. Modelos de séries temporais: definição; componentes (tendência, sazonalidade, ciclos e ruído); autocorrelação e autocorrelação parcial; conceito e testes de estacionaridade; cointegração; modelos AR, ARMA e ARIMA; modelos de suavização exponencial; modelos de decomposição; modelos de regressão com variáveis temporais (ARIMAX). 8. Tópicos em regressão: modelos de dados em painel; GLM; regressão espacial; regressão quantílica; regressão de Poisson; modelos VAR; ECM e GARCH. 9. Introdução a modelos causais: fundamentos de causalidade estatística, experimentos e quase-experimentos, desenho de descontinuidade de regressão, modelos de variáveis instrumentais, diferenças em diferenças, modelos de equações estruturais (SEM), métodos de pareamento. 11. Modelos de aprendizado por reforço: Q-Learning; Deep QNetworks (DQN); Policy Gradient Methods; multi-armed bandit. 12. Visão Computacional: técnicas de pré-processamento de imagem; OCR; segmentação e extração de características de imagens; detecção; segmentação e reconhecimento de objetos; classificação de imagens. 13. Modelos multi-modais: principais aplicações. 14. Quantificação de incertezas em modelos preditivos: Programação Probabilística; Amostragem de Gibbs; Inferência Variacional; Hamiltonian Monte Carlo; Modelos de Markov Ocultos; Aprendizado Profundo Probabilístico; Conformal Prediction. IX - PROCESSAMENTO DE LINGUAGEM NATURAL (NLP): 2. Representação de texto: N-grams; CBoW; FTD-IDF; word embeddings (Word2Vec, GloVe e demais) e document embeddings (Doc2Vec, BERT, ELMo e demais). 3. Modelagem de tópicos: latent dirichlet allocation (LDA); non-negative matrix factorization (NMF). X - PROGRAMAÇÃO E FERRAMENTAS. XI - VISUALIZAÇÃO; STORYTELLING E COMUNICAÇÃO CORPORATIVA. XII – GOVERNANÇA E SEGURANÇA DE DADOS.
Sobre o concurso
Última atualização em 12/2024Garantia de devolução do dinheiro em 7 dias.